Boeing F/A-18 Hornet (C/D and E/F) The F/A-18 has a digital control-by-wire flight control system which provides excellent handling qualities, and allows pilots to learn to fly the airplane with relative ease. At the same time, this system provides exceptional manoeuvrability and allows the pilot to concentrate on operating the weapons system. F/A-18 Hornet The F/A-18 "Hornet" is a single- and two-seat, twin engine, multi-mission fighter/attack aircraft that can operate from either aircraft carriers or land bases. The F/A-18 fills a variety of roles: air superiority, fighter escort, suppression of enemy air defenses, reconnaissance, forward air control, close and deep air support, and day and night strike missions. The F/A-18 Hornet replaced the F-4 Phantom II fighter and A-7 Corsair II light attack jet, and also replaced the A-6 Intruder as these aircraft were retired during the 1990s. The F/A-18 has a digital control-by-wire flight control system which provides excellent handling qualities, and allows pilots to learn to fly the airplane with relative ease. At the same time, this system provides exceptional maneuverability and allows the pilot to concentrate on operating the weapons system. A solid thrust-to-weight ratio and superior turn characteristics combined with energy sustainability, enable the F/A-18 to hold its own against any adversary. The power to maintain evasive action is what many pilots consider the Hornet's finest trait. In addition, the F/A-18 was also the Navy's first tactical jet aircraft to incorporate a digital, MUX bus architecture for the entire system's avionics suite. The benefit of this design feature is that the F/A-18 has been relatively easy to upgrade on a regular, affordable basis. The F/A-18 has proven to be an ideal component of the carrier based tactical aviation equation over its 15 years of operational experience. The only F/A-18 characteristic found to be marginally adequate by battle group commanders, outside experts, and even the men who fly the Hornet, is its range when flown on certain strike mission profiles. However, the inadequacy is managed well with organic and joint tanking assets.
F/A-18A/B/C/D aircraft will fly for years with the U.S. Marine Corps and eight international customers: Australia, Canada, Finland, Kuwait, Malaysia, Spain, Switzerland and Thailand. Although the F/A-18C/D's future growth is now limited, it will also continue to fill a critical role in the U.S. Navy's carrier battle group for many years to come and will be an excellent complement to the larger, longer range, more capable F/A-18E/F Super Hornet. While the general configuration of the YF-17 was retained, the F-18 became a completely new airplane. To meet the single-place fighter and attack mission capability, full use was made of new technology in digital computers. Coupled with cathode ray tubes for cockpit displays and appropriate controls based on thorough pilot evaluations in simulators, a single airplane and subsystems configuration for both missions was evolved During development, two-place trainer versions were added, to be built in limited numbers as TF/A-18s, intermingled with the basic F/As. Minimum changes were made to incorporate the second cockpit, with the two-seat airplanes retaining the ability to perform combat missions. Making the first flight in November 1978, the F/A-18 and its two-place derivative [subsequently redesignated the F/A-18B] underwent most of their development testing at the Naval Air Test Center under the new single-site testing concept. While much attention was focused on development problems, these were largely typical of those in any new program, with their resolution being part of the development process. For the most part, these occurred in the basic aircraft hardware rather than in the digital electronic systems. The original F/A-18A (single seat) and F/A-18B (dual seat) became operational in 1983 replacing Navy and Marine Corps F-4s and A-7s. It quickly became the battle group commander's mainstay because of its capability, versatility and availability. Reliability and ease of maintenance were emphasized in its design, and F/A-18s have consistently flown three times more hours without failure than other Navy tactical aircraft, while requiring half the maintenance time. The Hornet has been battle tested and has proved itself to be exactly what its designers intended: a highly reliable and versatile strike fighter. The F/A-18 played an important role in the 1986 strikes against Libya. Flying from USS CORAL SEA (CV 43), F/A-18s launched high-speed anti-radiation missiles (HARMs) against Libyan air defense radars and missile sites, effectively silencing them during the attacks on Benghazi facilities. F/A-18C/D
Following a successful run of more than 400 A and B models, the US Navy began taking fleet deliveries of improved F/A-18C (single seat) and F/A-18D (dual seat) models in September 1987. These Hornets carry the Advanced Medium Range Air-to-Air Missile (AMRAAM) and the infrared imaging Maverick air-to-ground missile. Two years later, the C/D models came with improved night attack capabilities. The new components included a navigation forward looking infrared (NAVFLIR) pod, a raster head-up display, night vision goggles, special cockpit lighting compatible with the night vision devices, a digital color moving map and an independent multipurpose color display. F/A-18Cs have synthetic aperture ground mapping radar with a doppler beam sharpening mode to generate ground maps. This ground mapping capability that permits crews to locate and attack targets in adverse weather and poor visibility or to precisely update the aircraft's location relative to targets during the approach, a capability that improves bombing accuracy. New production F/A-18Cs received the APG-73 radar upgrade radars starting in 1994, providing more precise and clear radar displays. The F/A-18C Nigh Attack Hornet has a pod-mounted Hughes AN/AAR-50 thermal imaging navigation set, a Loral AN/AAS-38 Nite Hawk FLIR targeting pod, and GEC Cat's Eyes pilot's night vision goggles. Some 48 F/A-18D two-seat Hornets are configured as the F/A-18D (RC) reconnaissance version, with the M61A1 cannon replaced by a pallet-mounted electro-optical suite comprising a blister-mounted IR linescan and two roll-stabilized sensor units, with all of these units recording onto video tape. On the first day of Operation Desert Storm, two F/A-18s, each carrying four 2,000 lb. bombs, shot down two Iraqi MiGs and then proceeded to deliver their bombs on target. Throughout the Gulf War, squadrons of U.S. Navy, Marine and Canadian F/A-18s operated around the clock, setting records daily in reliability, survivability and ton-miles of ordnance delivered. The Navy announced 18 May 1998 that its East Coast F/A-18 squadrons will relocate to Naval Air Station Oceana in Virginia Beach VA and Marine Corps Air Station Beaufort in Beaufort, SC. The jets will move from Naval Air Station Cecil Field in Jacksonville FL which was ordered closed by the 1995 Base Realignment and Closure Commission. Nine operational squadrons and the Fleet Replacement Squadron -- a total of 156 planes -- will move to Oceana. Two squadrons totaling 24 planes will move to Beaufort. The first squadron will move in the fall of 1998 and all 11 fleet squadrons and the Fleet Replacement Squadron completed their moves by October 1999. Throughout its service, annual upgrades to F/A-18 weapon systems, sensors, etc. continued. The latest lot of the F/A-18C/D has grown to be far more capable (night attack, precision strike, low observable technologies, etc.) than the original F/A-18A/B; however, by 1991, it was becoming clear that avionics cooling, electrical, and space constraints would begin to limit future growth. Additionally, another operational deficiency was beginning to develop. As the F/A-18C/D empty weight increased the aircraft were returning to the carrier with less than optimal reserve fuel and/or unexpended weapons. The additional range and "bring back" is not as essential to shore based operations. F/A-18A/B/C/D aircraft will fly for years with the U.S. Marine Corps and eight international customers: Australia, Canada, Finland, Kuwait, Malaysia, Spain, Switzerland and Thailand. Although the F/A-18C/D's future growth is now limited, it will also continue to fill a critical role in the U.S. Navy's carrier battle group for many years to come and will be an excellent complement to the larger, longer range, more capable F/A-18E/F Super Hornet. F/A-18E/F "Super Hornet" The multi-mission F/A-18E/F "Super Hornet" strike fighter is an upgrade of the combat-proven night strike F/A-18C/D. The Super Hornet will provide the battle group commander with a platform that has range, endurance, and ordnance carriage capabilities comparable to the A-6 which have been retired. The F/A-18E/F aircraft are 4.2 feet longer than earlier Hornets, have a 25% larger wing area, and carry 33% more internal fuel which will effectively increase mission range by 41% and endurance by 50%. The Super Hornet also incorporates two additional weapon stations. This allows for increased payload flexibility by mixing and matching air-to-air and/or air-to-ground ordnance. The aircraft can also carry the complete complement of "smart" weapons, including the newest joint weapons such as JDAM and JSOW. The Super Hornet can carry approximately 17,750 pounds (8,032 kg) of external load on eleven stations. It has an all-weather air-to-air radar and a control system for accurate delivery of conventional or guided weapons. There are two wing tip stations, four inboard wing stations for fuel tanks or air-to-ground weapons, two nacelle fuselage stations for Sparrows or sensor pods, and one centerline station for fuel or air-to-ground weapons. An internal 20 mm M61A1 Vulcan cannon is mounted in the nose. Carrier recovery payload is increased to 9,000 pounds, and its engine thrust from 36,000 pounds to 44,000 pounds utilizing two General Electric F414 turbo-fan engines. Although the more recent F/A-18C/D aircraft have incorporated a modicum of low observables technology, the F/A-18E/F was designed from the outset to optimize this and other survivability enhancements. Carrier recovery payload is increased to 9,000 pounds, and its engine thrust from 36,000 pounds to 44,000 pounds utilizing two General Electric F414 turbo-fan engines. Although the more recent F/A-18C/D aircraft have incorporated a modicum of low observables technology, the F/A-18E/F was designed from the outset to optimize this and other survivability enhancements. The Hughes Advanced Targeting Forward-Looking Infra-Red (ATFLIR), the baseline infrared system for the F/A-18 E/F, will also be deployed on earlier model F/A-18s. The Hughes pod features both navigation and infrared targeting systems, incorporating third generation mid-wave infrared (MWIR) staring focal plane technology. . Although
41% interdiction mission range increase may be the most notable F/A-18E/F
improvement, the ability to recover aboard with optimal reserve fuel
and a load of precision strike weapons, is of equal importance to the
battle group commander. The growth potential of the F/A-18E/F is more
important to allow flexible employment strategies in future years. If
an electronically scanned array antenna or another installation-sensitive
sensor or weapon system becomes available, the F/A-18E/F has the space,
power and cooling to accommodate it. Although the more recent F/A-18C/D
aircraft have incorporated a modicum of low observables technology,
the F/A-18E/F was designed from the outset to optimize this and other
survivability enhancements. The all-F/A-18C/D/E/F air wing brings an
increase in capability to the carrier battle group while ensuring the
potential to take advantage of technological advances for years to come.
Reference: http://www.fas.org/man/dod-101/sys/ac/f-18.htm Support
FAS Catch4all.com, Sandra Englund, February 4, 2006 |
Click
to see 787 Dream Liner The
Most Advanced Boeing KC 767 Tanker: MORE THAN 75 YEARS OF EXPERIENCE
(CLICK TO SEE A NEW KC 767 Photos) Free
Chat Box anywhere around the world
Positive
2003 ||
Positive
2004 || Positive
2005 |Positive
2006 Thank
you for visiting Catch4all.com. Please be sure bookmark our site.
1999-2005 Catch4all.com. All rights reserved. |